Percutaneous Management of VenoArterial (VA) Extracorporeal Membrane Oxygenation

Andrew Unzeitig MD, FACS William Ballard MD FACC Peter Barret MD, FACS Patrick Battey MD, FACS Eyal Ben-Arie MD, FACS Veer Chawhala MD David Dean MD, FACS Robert Powers MD, FACS Charles Ross MD, FACS Erin Sheffield NP

Piedmont Atlanta Hospital

Georgia Vascular Society
2019 Annual Meeting
Lake Oconee, Georgia
Disclosures

- None
Background

• Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is an increasingly used strategy for temporary support in cases of refractory cardiac or cardiopulmonary failure
• Use is increasing and indications are expanding
In adults, there are two possible ECMO configurations: central (cannulation of right atrium and ascending aorta) or peripheral pV-A ECMO (femoral cannulation).
• Peripheral is more common given emergent nature of the shock with ability to cannulate at bedside

• Large bore cannulation of femoral vessels 15-17 fr CFA 23-27fr CFV
Background - Vascular

• Limb ischemia and local bleeding complications are significant and have reported incidence ranging from 10-70%\(^1\)
 • Even with use of distal perfusion catheter*

• Complications often require acute and time-consuming management

Why should I care?

• Cardiac specialists may not have a complete understanding of the peripheral arterial system and its physiology, less experience managing iliac and femoral complications

• As indications expand, vascular specialists will increasingly be involved in management, especially of more difficult cases or complications.

• A complete understanding of both open and percutaneous solutions for management and prevention of bleeding and ischemia will lead to the most optimum outcomes
Goals from vascular perspective

• #1 Decrease mortality
 • Case selection
 • Good initial cannulation, rapid assessment of bleeding and ischemic complications with percutaneous interventions preferred early on.

• #2 Decrease amputation, fasciotomy and limb ischemia
 • Early/prophylactic placement of antegrade cannula

• #3 limit new emergencies (and nighttime calls)
 • Emphasis on technique, ensure proper catheter placement early on with imaging if necessary (ultrasound). Fem-stop for early bleeding control

• #4 conserve resources
 • Avoid OR when unnecessary
 • Is surgical decannulation necessary?
Surgical decannulation

• pVA-ECMO has previously been associated with higher rates of bleeding and ischemia after percutaneous decannulation compared to surgical (14.7% vs. 3.4% p<0.01)\(^1\)

• Surgical decannulation may avoid risk of psuedoanuerym, compression time associated with local thrombosis, allow examination of distal flow and allow for vessel repair\(^1\)

HOWEVER...

• Cannula site is often inflamed leading to increased blood loss, larger wounds with inherent wound complications, longer operative times and cumbersome patient transport
 • Not good Add-on cases

• IS THERE ANOTHER VIABLE OPTION?
Objective

• To examine vascular complications related to nonoperative removal of pVA ECMO compared to surgical removal
Methods

• Retrospective review of a prospectively maintained database of all VA-ECMO recipients who received pVA-ECMO at a single institution

• January 2014-May 2017

• Primary endpoints:
 • Extremity vascular complications
 • Cannulation site bleeding, limb ischemia, compartment syndrome, fasciotomy and amputation
 • Survival to discharge
pVA-ECMO technique

• Cannulation performed percutaneously by CT surgery or experienced cardiologist with ultrasound guidance
• Arterial cannula 15-17 fr into CFA
• Venous cannula 23-27fr into CFV, advanced to atrium
• Antegrade perfusion cannula into SFA 6-7fr
Percutaneous Decannulation

- If on anticoagulation, stopped 2h prior to removal
- Manual compression applied for minimum of 45 minutes
- If no bleeding a Femstop applied to complete hemostasis
 - 10-20mmHg above systolic blood pressure for 1-3min
 - Between systolic and diastolic for 15 min
 - 30-40 mm Hg for 60-180 min
 - Surgical revision if there was ongoing bleeding, recurrent bleeding, or loss of pulse
- Covered stent placement over cannulation site as well as closure devices also used in some cases
Results

- 204 patients received placement of pVA-ECMO
- 85 (42%) expired prior to removal
- 14 (7%) developed critical ischemia requiring intervention
 - SFA cannula, relocation of cannula, or surgical intervention
- 6 (3%) developed compartment syndrome requiring fasciotomy and/or amputation
- 4(2%) had hemorrhagic complications requiring operative intervention
Results

• 119 patients survived to decannulation (58%)
• 77/119 (65%) were removed percutaneously
• 42/119 (35%) removed surgically
• Comparing surgical to non-operative removal, there was no significant difference in survival to discharge (71% vs 79%; P=0.37) or extremity vascular complications (5% vs 6%; P=1.00)
• Length of stay was significantly shorter with non-operative removal
 • 26.2 days vs 38.3 days; P=.008
Results

- Most common reason for surgical removal was comfort level of intensivist with percutaneous removal
- Other causes were suspected low or high stick, body habitus, or suspected traumatic cannulation
- 4/77 (5%) of percutaneous decannualtion had persistent or recurrent bleeding requiring operative closure
ECMO complication Case example

• Called during clinic by structural heart cardiologist
• “We are having some trouble with a vascular patient, can you come take a look?...Now.”
• Patient had been undergoing mitral clip procedure with perforation of the L atrium, emergent sternotomy, femoral cannulation with repair, converted to VA-ECMO

• Called for expanding R thigh hematoma

• 77 yo male with COPD on O2, H/o of remote AFB, right limb down and now with left to right fem-fem bypass
• Sheath placed through ECMO tubing
• Viabahn placed across SFA
- Arterial cannula had been placed into the fem-fem bypass graft instead of the femoral artery
- Removed and closed with perclose
- Transitioned to central ECMO
Conclusion

• VA-ECMO mortality rates remain high, >40% in our series

• Non-operative removal of pVA-ECMO has a significantly shorter length of hospital stay with equivalent rates of in hospital mortality and extremity vascular complication compared to surgical removal.

• Percutaneous removal is safe in the majority of patients and associated with improved outcomes while conserving operating room resources

• Limitations: single center study, retrospective, inconsistent methodology (manual pressure, closure device, stent)
Background- Vascular

• Peripheral ECMO will change perfusion pathways
 • North-south syndrome
 • Ischemic upper extremities with warm lower extremities
 • Monophasic flow